

EM33-DIN

COMMUNICATION PROTOCOL

Version 1 Revision 0

September 9th, 2009

Index

1.1 1.2	Introduction	
1.2.1	Function 03h (Read Holding Registers)	
1.2.2	Function 04h (Read Input Registers)	4
1.2.3	Function 06h (Write Single Holding Register)	
1.2.4	Function 08h (Diagnostic with sub-function code 00h)	
1.2.5	Broadcast mode	
1.3	Application notes	
1.3.1	RS485 general considerations	
1.3.2	MODBUS timing	6
2 TAE	BLES	7
2.1	Data format representation In Carlo Gavazzi instruments	7
2.1.1	Geometric representation	
2.2	Maximum and minimum electrical values in EM33-DIN	7
2.3	Instantaneous variables and meters	8
2.4	Firmware version and revision code	
2.5	Carlo Gavazzi Controls identification code	
2.6	Programming parameter tables	
2.6.1	Password configuration menu.	
2.6.2 2.6.3	Serial port configuration menu	
2.6.4	Year of production	
2.0.4	Serial Huiriber	٠. ٤
3 REV	VISIONS	10
3.1	Modifications from Version 1 Revision 0	10

1.1 Introduction

The RS485 serial interface supports the MODBUS/JBUS (RTU) protocol. In this document only the information necessary to read/write from/to EM-DIN has been reported (not all the parts of the protocol have been implemented).

For a complete description of the MODBUS protocol please refer to the "Modbus_Application_Protocol_V1_1a.pdf" document that is downloadable from the www.modbus.org web site.

1.2 MODBUS functions

These functions are available on EM33-DIN:

- Reading of n "Holding Registers" (code 03h)
- Reading of n "Input Register" (code 04h)
- Writing of one "Holding Registers" (code 06h)
- Diagnostic (code 08h with sub-function code 00h)
- Broadcast mode (writing instruction on address 00h)

IMPORTANT:

- 1) In this document the "Modbus address" field is indicated in two modes:
 - 1.1) "Modicom address": it is the "6-digit Modicom" representation with Modbus function code 04 (Read Input Registers). It is possible to read the same values with function code 03 (Read Holding Registers) replacing the first digit ("3") with the number "4".
 - 1.2) "Physical address": it is the "word address" value to be included in the communication frame.
- 2) The functions 03h and 04h have exactly the same effect and can be used indifferently.
- 3) The communication parameters are to be set according to the configuration of the instrument (refer to EM33-DIN instruction manual)

1.2.1 Function 03h (Read Holding Registers)

This function is used to read the contents of a contiguous block of holding registers (word). The Request frame specifies the starting register address and the number of registers to be read. It is possible to read maximum 11 registers (words) with a single request, when not differently specified. The register data in the response message are packed as two bytes per register (word), with the binary contents right justified within each byte. For each register, the first byte contains the high order bits (MSB) and the second contains the low order bits (LSB).

Request frame

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	
Function code	1 byte	03h	
Starting address	2 bytes	0000h to FFFFh	Byte order: MSB, LSB
Quantity of registers (N word)	2 bytes	1 to 10h (1 to 11)	Byte order: MSB, LSB
CRC	2 bytes		

Response frame (correct action)

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	
Function code	1 byte	03h	
Quantity of requested bytes	1 byte	N word * 2	
Register value	N*2 bytes		Byte order: MSB, LSB
CRC	2 bytes		

Response frame (incorrect action)

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	Possible exception :
Function code	1 byte	83h	01h: illegal function
Exception code	1 byte	01h, 02h, 03h, 04h (see note)	02h: illegal data address
CRC	2 bytes		03h: illegal data value
	,		04h: slave device failure

1.2.2 Function 04h (Read Input Registers)

This function code is used to read the contents of a contiguous block of input registers (word). The Request frame specifies the starting register address and the number of registers to be read. It is possible to read maximum 11 register (word) with a single request, when not differently specified. The register data in the response message are packed as two bytes per register (word), with the binary contents right justified within each byte. For each register, the first byte contains the high order bits (MSB) and the second contains the low order bits (LSB).

Request frame

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	
Function code	1 byte	04h	
Starting address	2 bytes	0000h to FFFFh	Byte order: MSB, LSB
Quantity of registers (N word)	2 bytes	1 to 10h (1 to 11)	Byte order: MSB, LSB
CRC	2 bytes		

Response frame (correct action)

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	
Function code	1 byte	04h	
Quantity of requested bytes	1 byte	N word * 2	
Register value	N*2 bytes		Byte order: MSB, LSB
CRC	2 bytes		

Response frame (incorrect action)

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	Possible exception :
Function code	1 byte	84h	01h: illegal function
Exception code	1 byte	01h, 02h, 03h, 04h	02h: illegal data address
CRC	2 bytes		03h: illegal data value
	,		04h: slave device failure

1.2.3 Function 06h (Write Single Holding Register)

This function code is used to write a single holding register. The Request frame specifies the address of the register (word) to be written and its content.

The correct response is an echo of the request, returned after the register content has been written.

Request frame

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	
Function code	1 byte	06h	
Starting address	2 bytes	0000h to FFFFh	Byte order: MSB, LSB
Register value	2 bytes	0000h to FFFFh	Byte order: MSB, LSB
CRC	2 bytes		

Response frame (correct action)

Description	Length	Value	Note	
Physical address	1 byte	1 to F7h (1 to 247)		
Function code	1 byte	06h		
Starting address	2 bytes	0000h to FFFFh	Byte order: MSB, LSB	
Register value	2 bytes	0000h to FFFFh	Byte order: MSB, LSB	
CRC	2 bytes			

Response frame (incorrect action)

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	Possible exception :
Function code	1 byte	86h	01h: illegal function
Exception code	1 byte	01h, 02h, 03h, 04h	02h: illegal data address
CRC	2 bytes		03h: illegal data value
	,		04h: slave device failure

1.2.4 Function 08h (Diagnostic with sub-function code 00h)

MODBUS function 08h provides a series of tests to check the communication system between a client (Master) device and a server (Slave), or to check various internal error conditions in a server. EM33-DIN supports only 0000h sub-function code (Return Query Data). With this sub-function the data passed in the request data field is to be returned (looped back) in the response. The entire response message should be identical to the request.

Request frame

Description	Length	Value	Note
Physical address	1 byte	1 to F7h (1 to 247)	
Function code	1 byte	08h	
Sub-function	2 bytes	0000h	
Data (N word)	N *2 bytes	Data	Byte order: MSB, LSB
CRC	2 bytes		

Response frame (correct action)

Description	Length	Value	Note
Physical address	1 byte	1 to F7 (1 to 247)	
Function code	1 byte	08h	
Sub-function	2 bytes	0000h	
Data (N word)	N *2 bytes	Data	Byte order: MSB, LSB
CRC	2 bytes		

Response frame (incorrect action)

Description	n L	.ength	Value	Note
Physical address	1 byte	Э	1 to F7h (1 to 247)	Possible exception :
Function code	1 byte	Э	88h	01h: illegal function
Exception code	1 byte	Э	01h, 02h, 03h, 04h	02h: illegal data address
CRC	2 byte	es		03h: illegal data value
	,			04h: slave device failure

1.2.5 Broadcast mode

In broadcast mode the master can send a request (command) to all the slaves. No response is returned to broadcast requests sent by the master. It is possible to send the broadcast message only with function code 06h using address 00h.

1.3 Application notes

1.3.1 RS485 general considerations

- 1. To avoid errors due to the signal reflections or line coupling, it is necessary to terminate the bus at the beginning and at the end (inserting a 120 ohm 1/2W 5% resistor between line B and A in the last instrument and in the Host interface).
- The network termination is necessary even in case of point-to-point connection and/or of short distances.
- 3. For connections longer than 1000m or if in the network there are more than 160 instruments (with 1/5 unit load as used in EM33-DIN interface), a signal repeater is necessary.
- 4. For bus connection it is suggested to use an AWG24 balanced pair cable and to add a third wire for GND connection. Connect GND to the shield if a shielded cable is used.
- 5. The GND is to be connected to ground only at the host side.
- 6. If an instrument does not answer within the "max answering time", it is necessary to repeat the query. If the instrument does not answer after 2 or 3 consecutive queries, it is to be considered as not connected, faulty or reached with a wrong address. The same consideration is valid in case of CRC errors or incomplete response frames.

1.3.2 MODBUS timing

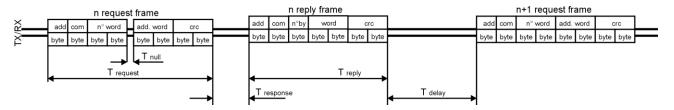


Fig. 1: 2-wire timing diagram

Timing characteristics of reading function:	msec
T response: Max answering time	500ms
T response: Typical answering time	40ms
T delay: Minimum time before a new query	3 , 5char
T null: Max interruption time during the request frame	2,5char

2 TABLES

2.1 Data format representation In Carlo Gavazzi instruments

The variables are represented by integers or floating numbers, with 2's complement notation in case of "signed" format, using the following:

Format	IEC data type	Description	Bits	Range
INT16	INT	Integer	16	-32768 32767
UINT16	UINT	Unsigned integer	16	0 65535
INT32	DINT	Double integer	32	-2 ³¹ 2 ³¹
UINT32	UDINT	Unsigned double int	32	0 2 ³² -1
UINT64	ULINT	Unsigned long integer	64	0 2 ⁶⁴ -1
IEEE754 SP		Single-precision floating-point	32	$-(1+[1 -2^{-23}]) \times 2^{127} \dots 2^{128}$

For all the formats the byte order (inside the single word) is MSB->LSB. In INT32, UINT32 and UINT64 formats, the word order is LSW-> MSW.

2.1.1 Geometric representation

According to the signs of the power factor, the active power P and the reactive power Q, it is possible to obtain a geometric representation of the power vector, as indicated in the drawing below, according to EN 60253-23:

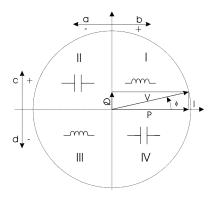


Fig. 2 : Geometric Representation

a = Exported active power

b = Imported active power

c = Imported reactive power

d = Exported reactive power

2.2 Maximum and minimum electrical values in EM33-DIN

The maximum electrical input values are reported in the following table. If the input is above the maximum value the display shows "----".

Table 2.1-1

	AV9 inpu	AV9 input option		
	Max value	Min value		
VL-N	276V	0		
A	32A	0		

The overflow indication "EEE" is displayed when the MSB value of the relevant variable is 7FFFh.

2.3 Instantaneous variables and meters

MODBUS: read only mode with functions code 03 and 04

Table 2.3-1

Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 00001	0000h	2	V L1-N	INT32	
3 00003	0002h	2	V L2-N	INT32	Value weight: Volt*10
3 00005	0004h	2	V L3-N	INT32]
3 00007	0006h	2	A L1	INT32	
3 00009	0008h	2	A L2	INT32	Value weight: Ampere*1000
3 00011	000Ah	2	A L3	INT32	
3 00013	000Ch	2	WΣ	INT32	Value weight: Watt*10
3 00015	000Eh	2	KWh (+) TOT	INT32	Value weight: kWh*10
3 00017	0010h	1	Phase sequence	INT16	Value -1 correspond to L1-L3-L2 sequence, value 0 correspond to L1-L2-L3 sequence

Note: it is possible to read all variables with one Modbus request

2.4 Firmware version and revision code

MODBUS: read only mode with functions code 03 and 04 limited to a word at a time

Table 2.4-1

Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 00771	0302h	1	Version code	UINT 16	Value=0: A
					Value=1: B

I	3 00772	0303h	1	Revision code	UINT 16	

2.5 Carlo Gavazzi Controls identification code

MODBUS: read only mode with functions code 03 and 04 limited to a word at a time

Table 2.5-1

Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 00012	000Bh	1	Carlo Gavazzi Controls	UINT 16	Value=64: EM33-DIN AV3
			identification code		

2.6 Programming parameter tables

2.6.1 Password configuration menu

MODBUS: read and write mode

Table 2.9-1

	O. Toda and Wil	1 4510 2:0 1			
Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 04353	1100h	1	PASSWORD	UINT 16	Minimum valid value: 0d
					Maximum valid value: 9999d

Note: Default setting for values that exceed the limits is 0

2.6.2 Serial port configuration menu

MODBUS: read and write mode

Table 2.6-1

Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 04354	1101h	1	RS485 instrument address	UINT 16	Value min = 1
					Value max = 247
3 04355	1102h	1	RS485 baud rate	UINT 16	Value=0: 4800
					Value=1: 9600

Note: The number of stop bits is fixed to "1" and the parity control is fixed to "none".

Default settings for values that exceed the limits are 1 for serial address and 9600 for baud rate.

2.6.3 Year of production

MODBUS: read only mode

Table 2.11-1

IVIODEO	3. I cau only lik	Jue			1 able 2.11-1
Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 04356	1103h	1	Year	UINT 16	

2.6.4 Serial number

MODBUS: read only mode

Table 2.12-1

Modicom	Physical	Length	VARIABLE	Data	Notes
address	address	(words)	ENG. UNIT	Format	
3 04357	1104h	2		UINT 32	

3 REVISIONS

3.1 Modifications from Version 1 Revision 0

